Efficient CBIR Using Color Histogram Processing

نویسندگان

  • Neetu Sharma
  • Paresh Rawat
چکیده

The need for efficient content-based image retrieval system has increased hugely. Efficient and effective retrieval techniques of images are desired because of the explosive growth of digital images. content based image retrieval (CBIR) is a promising approach because of its automatic indexing retrieval based on their semantic features and visual appearance. The similarity of images depends on the feature representation.However users have difficulties in representing their information needs in queries to content based image retrieval systems. In this paper we investigate two methods for describing the contents of images. The first one characterizes images by global descriptor attributes, while the second is based on color histogram approach.To compute feature vectors for Global descriptor, required time is much less as compared to color histogram. Hence cross correlation value & image descriptor attributes are calculated prior histogram implementation to make CBIR system more efficient.The performance of this approach is measured and results are shown. The aim of this paper is to compare various global descriptor attributes and to make CBIR system more efficient. It is found that further modifications are needed to produce better performance in searching images.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparative Study and Optimization of Feature-Extraction Techniques for Content based Image Retrieval

The aim of a Content-Based Image Retrieval (CBIR) system, also known as Query by Image Content (QBIC), is to help users to retrieve relevant images based on their contents. CBIR technologies provide a method to find images in large databases by using unique descriptors from a trained image. The image descriptors include texture, color, intensity and shape of the object inside an image. Several ...

متن کامل

Image retrieval based on fuzzy color histogram processing

Content-based image retrieval (CBIR) is a collection of techniques for retrieving images on the basis of features, such as color, texture and shape. An efficient tool, which is widely used in CBIR, is that of color image histograms. The classic method of color histogram creation results in very large histograms with large variations between neighboring bins. Thus, small changes in the image mig...

متن کامل

Content Based Image Retrieval by Multi Features using Image Blocks

Content based image retrieval (CBIR) is an effective method of retrieving images from large image resources. CBIR is a technique in which images are indexed by extracting their low level features like, color, texture, shape, and spatial location, etc. Effective and efficient feature extraction mechanisms are required to improve existing CBIR performance. This paper presents a novel approach of ...

متن کامل

Content Based Image Retrieval Using Integration of Color and Texture Features

1451 ISSN: 2278 – 1323 All Rights Reserved © 2014 IJARCET Abstract— CBIR is a process of retrieve and display relevant images from large collection of image database on the basis of their visual content. CBIR is used for retrieval of images depending upon visual contents of images known as features. This paper focuses on color and texture based techniques for achieving efficient and effective r...

متن کامل

Human-Centered Content-Based Image Retrieval

In this chapter, general color concepts are introduced, which will be used in the remainder of this thesis, for color analysis, colorful texture analysis, shape extraction, and CBIR. First, the color histogram is described: a discrete function that quantizes the distribution of colors of an image. Next, several color spaces and their color quantization schemes are discussed. In addition, an alt...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011